Friday, August 11, 2006
Spoilers
I've seen spoilers wider than the body, and spoilers on family cars, it gets crazy. Well, it's their car. I'm sure you can find a lot more examples of what I'm talking about on the web.
Muffler tips
But then I also read a lot of articles claiming that these changes does not affect the car whatsoever other than just making a lot of noise. I don't get it. Although I have to admit having a slightly larger muffler tip does look a bit better than a small one.
Whatever the reason may be, it does help the overall look of the car. Regardless of being able to help the car become faster or not.
Thursday, August 3, 2006
James Bond wannabe
I found this at Carforums.net and I don't know if it's really cool, or really lame. This guy claims he installed James Bond type of mods on this ride. It has oxygen masks, a pistol compartment, can leave oil slicks and tacks from the rear and even has shotgun turrets. I mean, it's cool to have that kind of shit on the movies and if you're the mysterious spy guy type who has a lot of enemies. But let's be real, How often can you use oil slicks? or even the nail tacks and the shotgun turret?
It says it has about $350,000 worth of mods. With monitors everywhere, and touch screen controls, and even smoke screen. SMOKE SCREEN! you have got to be kidding, let's say you're driving on the freeway trying to evade cops or whatever, you use the smoke screen, then what? I think it only works on ninjas, and the people who do kung fu, not on cars. You're driving, so smoke gets blown off everywhere, I think it's totally useless to use that.
Basically, if what he says is true and he did put all those modifications on that car, I think he's nuts. Not only is it useless, but ugly as well, I mean look at the interior, it's plain ugly. But that's just me, maybe some rich dude who has a passion for this type of craziness will actually buy it, who knows.
Check out the full story here
Custom paint jobs
When everything's done on the inside of the car I guess it's time to get that custom paint job to accentuate everything. Nowadays there are a lot of options when it comes to getting a paint job. You could get anything from small decals to larger than life airbrush designs (for the more adventurous). The latter I believe is the most popular. There are now a lot of airbrush designers who are in the market for designing and painting the exterior of a car, the only limits would be the limits to your imagination.
I guess this is the best option when it comes to giving your car it's own personality. There have been a lot of crazy airbrush designs and it's still getting crazier. From old paintings to Christina Aguilera, it definitely shows that airbrush design has come a long way.
Here are a couple of the sweetest designs I found. It belongs to an Australian design company, check them out here.
Thursday, July 6, 2006
New blog
Saturday, June 10, 2006
Bdy Kits blog
Thursday, June 8, 2006
Car Customization - Body Kits
Body Kits not only improve the appearance of the car, it also adds a little to the performance. Depending on the body kit, it can lessen the drag of the car by increasing the down force. It also gives the appearance that the car is lowered.
When choosing a body kit, always try to find out what the body kit is made up of. Most of the time it's made of fiberglass and some are made of carbon fiber. I will explain the difference in the future.
Sunday, June 4, 2006
Friday, May 26, 2006
Body Kits
All Body Kits are On Sale!
They have all your customization needs, from engine upgrades to rims.
Monday, May 22, 2006
Greddy e-Manage Ultimate
As seen on www.importtuner.com this is the newest on the "e" market. It features the first PC Tunable engine management system to boost the power of your engine. It definitely does make tuning a lot easier for the average joe. It has a usb port that you can connect to a PC and there you go, tune like crazy.
Although connecting to a computer is easy, (as anyone with a usb ca say) installing the ems itself is a lot more technical. Consulting a professional is always advised.
Well, imagine the ease of connecting your car to your home computer and tweaking it then and there. Now isn't that nice.
Read more here - Import Tuner Reviews
Sunday, May 21, 2006
Car customization - car configurator
Car configurator
Friday, May 19, 2006
Car customization - Exhaust Theory
http://www.nsxprime.com/FAQ/Miscellaneous/exhausttheory.htm
Let's start from the beginning. What is an exhaust system? Silly question? Not hardly. Exhaust systems carry out several functions. Among them are: (1) Getting hot, noxious exhaust gasses from your engine to a place away from the engine compartment; (2) Significantly attenuating noise output from the engine; and (3) In the case of modern cars, reduce exhaust emissions.
Hardware
In order to give you a really good idea of what makes up an exhaust system, let's start with what exhaust gas travels through to get out of your car, as well as some terms and definitions:
After your air/fuel mixture (or nitrous/fuel mixture) burns, you will obviously have some leftovers consisting of a few unburned hydrocarbons (fuel), carbon monoxide, carbon dioxide, nitrogen oxides, sulfur dioxide, phosphorus, and the occasional molecule of a heavy metal, such as lead or molybdenum. These are all in gaseous form, and will be under a lot of pressure as the piston rushes them out of the cylinder and into the exhaust manifold or header. They will also be hotter 'n Hades. (After all, this was the explosion of an air/fuel mixture, right?) An exhaust manifold is usually made of cast iron, and its' primary purpose is to funnel several exhaust ports into one, so you don't need four exhaust pipes sticking out the back of your Civic.
Exhaust manifolds are usually pretty restrictive to the flow of exhaust gas, and thus waste a lot of power because your pistons have to push on the exhaust gasses pretty hard to get them out. So why does virtually every new automobile sold have exhaust manifolds? Because they are cheap to produce, and easy to install. Real cheap. Real easy. Like me.
"Ok," you ask, "so now what?" Ah, good thing you asked. The performance alternative to the exhaust manifold is a header. What's the difference? Where a manifold usually has several holes converging into a common chamber to route all your gasses, a header has precisely formed tubes that curve gently to join your exhaust ports to your exhaust pipe. How does this help? First of all, as with any fluid, exhaust gasses must be treated gently for maximum horsepower production. You don't want to just slam-bang exhaust gas from your engine into the exhaust system. No way, Jo-se'! Just as the body of your '94 Eclipse is beautiful, swoopy, and aerodynamic, so must be the inside of your exhaust system.
Secondly, a header can be "tuned" to slightly alter your engines' characteristics. We'll go in-depth into header tuning a little later.
Nextly, exhaust gasses exit from your manifold or header, travel through a bit of pipe, then end up in the catalytic converter, or "cat". The cat's main job is to help clean up some of the harmful chemicals from your exhaust gas so they don't end up in your lungs. In most cars, they also do a great job of quieting things down and giving any exhaust system a deeper, mellow tone. You'll see a lot of Self-Proclaimed Master Technicians (SPMT's) telling people that removing a cat will get you tons of power. There's room for debate on this, but in our experience, removing a catalytic converter from a new car won't gain you much in the horsepower department. It can also get you a $1500 fine if the EPA finds out! If you drive an OBD-II equipped car, you'll also get that damn annoying CHECK ENGINE light burnin' up your dashboard. (And for all you racers concerned with OBD-II's fabled "limp mode", you can put your fears to rest.)
From the catalytic converter, the exhaust gasses go through a bit more pipe and then into a muffler, or system consisting of several mufflers and/or resonators.
Are you a muff?
Exhaust gases leave the engine under extremely high pressure. If we allowed exhaust gasses escape to the atmosphere directly from the exhaust port, you can well imagine how loud and cop-attracting the noise would be. For the same reason gunshots are loud, engine exhaust is loud. Sure, it might be cool to drive around on the street with that testosterone producing, chest-thumping, 150 decibel roar coming from your car… for about 5.3 seconds. (Not 5.2 or 5.4 seconds… 5.3.) Even the gentleman's gentleman has gotta use a muffler, or system of mufflers, on their exhaust.
Again, you may hear a few SPMT's tell you that "Borla mufflers make horsepower!" Or "An engine needs some backpressure to run properly!" Nonsense. A muffler can no more "make" horsepower than Wile E. Coyote can catch roadrunners. Any technician with any dyno experience will tell you that the best mufflers are no mufflers at all!
Types of Muff
Mufflers can take care of the silencing chores by three major methods: Absorption, Restriction, and Reflection. Mufflers can use one method, or all three, to attenuate sound that is not so pleasing to the ears of the Highway Patrol.
The absorption method is probably the least effective at quelling engine roar, but the benefit is that "absorbers" are also best at letting exhaust gas through. Good examples of absorbers are the mufflers found in GReddy BL-series exhausts, DynoMax UltraFlow, and the good old-fashioned Cherry Bomb glasspack.
Absorption mufflers are also the simplest. All of the above named mufflers utilize a simple construction consisting of a perforated tube that goes through a can filled with a packing material, such as fiberglass or steel wool. This is similar to simply punching holes in your exhaust pipe, then wrapping it up with insulation. Neat, huh?
Another trick absorption mufflers use to kill off noise is, well, tricky. For example, the Hooker Aero Chamber muffler is a straight-through design, with a catch. Instead of a simple, perforated tube, there is a chamber inside the muffler that is much larger than the rest of the exhaust pipe. This design abates sound more efficiently than your standard straight-through because when the exhaust gasses enter this large chamber they slow down dramatically. This gives them more time to dwell in the sound insulation, and thus absorb more noise. The large chamber gently tapers back into the smaller size of your exhaust pipe, and the exhaust gasses are sent on their merry way to the tailpipe.
Restriction
Doesn't that word just make your skin crawl? It's right up there in the same league with words like "maim" and "rape".
Obviously, a restrictive muffler doesn't require much engineering expertise, and is almost always the least expensive to manufacture. Thus, we find restrictive mufflers on almost all OEM exhaust systems. We won't waste much time on the restrictive muffler except to say that if you got 'em, you might not want to flaunt 'em.
Reflection
Probably the most sophisticated type of muffler is the reflector. They often utilize absorption principles in conjunction with reflection to make the ultimate high-performance silencer. Remember any of your junior high school math? Specifically, that like numbers cancel each other when on a criss-cross? That's the same principal used by the reflective muffler. Sound is a wave. And when two like waves collide, they will "cancel" each other and leave nothing to call a corpse but a spot of low-grade heat.
There are numerous engineering tricks used in the reflective muffler. Hedman Hedders makes a muffler that looks a lot like a glasspack. In fact, it is a glasspack with a catch. The outer casing is sized just-so, so that high-pitched engine sound (what we deem "noise") is reflected back into the core of the muffler… where those sound waves meet their maker as they slam right into a torrent of more sound waves of like wavelength coming straight from the engine. And, this muffler is packed with a lot of fiberglass to help absorb any straggling noise that might be lagging behind.
The Exhaust Pulse
To gain a more complete understanding of how mufflers and headers do their job, we must be familiar with the dynamics of the exhaust pulse itself. Exhaust gas does not come out of the engine in one continuous stream. Since exhaust valves open and close, exhaust gas will flow, then stop, and then flow again as the exhaust valve opens. The more cylinders you have, the closer together these pulses run.
Keep in mind that for a "pulse" to move, the leading edge must be of a higher pressure than the surrounding atmosphere. The "body" of a pulse is very close to ambient pressure, and the tail end of the pulse is lower than ambient. It is so low, in fact, that it is almost a complete vacuum! The pressure differential is what keeps a pulse moving. A good Mr. Wizard experiment to illustrate this is a coffee can with the metal ends cut out and replaced with the plastic lids. Cut a hole in one of the lids, point it toward a lit candle and thump on the other plastic lid. What happens? The candle flame jumps, then blows out! The "jump" is caused by the high-pressure bow of the pulse we just created, and the candle goes out because the trailing portion of the pulse doesn't have enough oxygen-containing air to support combustion. Neat, huh?
Ok, now that we know that exhaust gas is actually a series of pulses, we can use this knowledge to propagate the forward-motion to the tailpipe. How? Ah, more of the engineering tricks we are so fond of come in to play here.
Just as Paula Abdul will tell you that opposites attract, the low pressure tail end of an exhaust pulse will most definitely attract the high-pressure bow of the following pulse, effectively "sucking" it along. This is what's so cool about a header. The runners on a header are specifically tuned to allow our exhaust pulses to "line up" and "suck" each other along! Whoa, bet you didn't know that! This brings up a few more issues, since engines rev at various speeds, the exhaust pulses don't always exactly line up. Thus, the reason for the Try-Y header, a 4-into-1 header, etc. Most Honda headers are tuned to make the most horsepower in high RPM ranges; usually 4,500 to 6,500 RPM. A good 4-into-1 header, such as the ones sold by Gude, are optimal for that high winding horsepower you've always dreamed of. What are exhaust manifolds and stock exhaust systems good for? Besides a really cheap boat anchor? If you think about it, you'll realize that since stock exhausts are so good at restricting that they'll actually ram the exhaust pulses together and actually make pretty darn good low-end torque! Something to keep in mind, though, is that even though an OEM exhaust may make gobs of low-end torque, they are not the most efficient setup overall, since your engine has to work so hard to expel those exhaust gasses. Also, a header does a pretty good job of additionally "sucking" more exhaust from your combustion chamber, so on the next intake stroke there's lots more fresh air to burn. Think of it this way: At 8,000 RPM, your Integra GS-R is making 280 pulses per second. There's a lot more to be gained by minimizing pumping losses as this busy time than optimizing torque production during the slow season.
General Rules of Thumb with Headers
You will undoubtedly see a variety of headers at your local speed shop. While you won't be able to determine the optimal power range of the headers by eyeballing them, you'll find that in general, the best high-revving horsepower can be had with headers utilizing larger diameter, shorter primary tubes. Headers with smaller, longer primaries will get you
slightly better fuel economy and better street driveability. With four cylinder engines, these are also usually of the Tri-Y design, such as the DC Sports and Lightspeed headers.
Do Mufflers "Make" Horsepower?
The answer, simply, is no. The most efficient mufflers can only employ the same scavenging effect as a header, to help slightly overcome the loss of efficiency introduced into the system as back pressure. But I have yet to see an engine that made more power with a muffler than an open header exhaust. "So," you ask, "what the hell is the best flowing muffler I can buy?"
According to the flowbench, two of the best flowing units you can buy are the Walker Dyno Max and the Cyclone Sonic. They even slightly out flow the straight through designs from HKS and GReddy BL series. Amongst the worst, are the Thrush Turbo and Flow Master mufflers. We'll flow some of the newer mufflers as they become available at our local Chief auto.
Resonators
On your typical cat-back exhaust system, you'll see a couple of bulges in the piping that are apparently mini-mufflers out to help the big muffler that hangs out back. These are called Helmholtz Resonators and are very similar to glasspacks. The main difference is that firstly, there is no sound-absorbing fiberglass or steel wool in a Resonator. And secondly, their main method of silencing is the reflective principle, not absorption. An easy way to tell the difference between a glasspack and a true Helmholtz Resonator is to "ping" one with your finger. A glasspack will make a dull thud, and a true Resonator will make a clear "ping!" sound.
Turbos
Another object that might be sitting in your exhaust flow is a turbine from a turbocharger. If that is the case, we envy you.
Not only that, but turbos introduce a bit of backpressure to your exhaust system, thus making it a bit quieter. All of the typical scavenging rules still apply, but with a twist. Mufflers work really well now! Remember, one of the silencing methods is restriction, and a turbine is just that, a restriction.
This is actually where the term "turbo muffler" is coined. Since a turbine does a pretty good job of silencing, OEM turbo mufflers can do a lot less restricting to quiet things down. Of course, aftermarket manufacturers took advantage of this performance image and branded a lot of their products with the "turbo" name in order to drum up more business from the high performance crowd. We're sad to say that the term "turbo" has been bastardized in this respect, and would like that to serve as a warning. A "turbo" muffler is not necessarily a high-performance muffler.
Pipe Sizing
We've seen quiet a few "experienced" racers tell people that a bigger exhaust is a better exhaust. Hahaha… NOT.
As discussed earlier, exhaust gas is hot. And we'd like to keep it hot throughout the exhaust system. Why? The answer is simple. Cold air is dense air, and dense air is heavy air. We don't want our engine to be pushing a heavy mass of exhaust gas out of the tailpipe. An extremely large exhaust pipe will cause a slow exhaust flow, which will in turn give the gas plenty of time to cool off en route. Overlarge piping will also allow our exhaust pulses to achieve a higher level of entropy, which will take all of our header tuning and throw it out the window, as pulses will not have the same tendency to line up as they would in a smaller pipe. Coating the entire exhaust system with an insulative material, such as header wrap or a ceramic thermal barrier coating reduces this effect somewhat, but unless you have lots of cash burning a hole in your pocket, is probably not worth the expense on a street driven car.
Unfortunately, we know of no accurate way to calculate optimal exhaust pipe diameter. This is mainly due to the random nature of an exhaust system -- things like bends or kinks in the piping, temperature fluctuations, differences in muffler design, and the lot, make selecting a pipe diameter little more than a guessing game. For engines making 250 to 350 horsepower, the generally accepted pipe diameter is 3 to 3 ½ inches. Over that amount, you'd be best off going to 4 inches. If you have an engine making over 400 to 500 horsepower, you'd better be happy capping off the fun with a 4 inch exhaust. Ah, the drawbacks of horsepower. The best alternative here would probably be to just run open
exhaust!
Other Rules
A lot of the time, you'll hear someone talking about how much hotter the exhaust system on a turbo car gets than a naturally aspirated car. Well, if you are catching my drift so far, you'll know that this is a bunch of BS. The temperature of exhaust gas is controlled by air/fuel mixture, spark, and cam timing. Not the turbo hanging off the exhaust manifold.
When designing an exhaust system, turbocharged engines follow the same rules as naturally aspirated engines. About the only difference is that the turbo engine will require quite a bit less silencing.
Another thing to keep in mind is that, even though it would be really super cool to get a 4 inch, mandrel bent exhaust system installed under your car, keep in mind that all of that beautiful art work won't do you a bit of good if the piping is so big that it gets punctured as you drag it over a speed bump! A good example of this is the 3 inch, cat back system sold by Thermal Research and Development for the Talon/Laser/Eclipse cars. The piping is too big to follow the stock routing exactly, and instead of going up over the rear suspension control arms, it hangs down below the mechanicals, right there in reach of large rocks! So when designing your Ultimate Exhaust System, do be careful!
Wednesday, May 17, 2006
Car Customization - Car forums
For those who do not know, I'd like to inform you about Car Forums at www.carforums.net. It's a great place to hang out, post your car, get info about anything car related.
-Paolo
Monday, May 15, 2006
Car Customization - NOS
Chemical Properties : A nitrous oxide molecule is made up of 2 atoms of nitrogen and 1 atom of oxygen. By weight it is 36% oxygen (air is only 23.6% oxygen). At 70° F it takes 760 PSI of vapour pressure to hold nitrous in liquid form. The critical temperature is 97.7° F; at this temp the vapour pressure can no longer hold the nitrous in liquid form. At this point the nitrous turns gaseous and will be at 1069 PSI. As temperature rises further, so will pressure, but it will remain in gaseous form. If you intend to siphon liquid nitrous, it is important to keep the temperature below 97.7°. When liquid nitrous is released, it will go from 760 PSI to 14.7 PSI (normal atmospheric pressure). It will then begin to boil and rapidly expand; the pressure drop will cause the temperature to decrease. Nitrous boils at 129.1°F below zero.
How Nitrous Oxide Injection Creates Torque :
Torque is the force that turns the crankshaft and creates acceleration. People are consumed with hp numbers, but hp is not what creates acceleration for winning drag races. Hp does create top end speed which is fine for land speed records or long distance endurance racing where acceleration rate / torque is not what determines the winner. To get the best out of nitrous, you need to utilize the massive torque it provides and concentrate on getting the highest torque across the whole rpm range.
Nitrous oxide systems make large amounts of torque by allowing an engine to burn more fuel at a lower rpm range than normal. Burning more fuel this way creates a longer burn period (and slightly higher cylinder pressures, if the timing is not corrected), that will push down on the pistons with greater average force. When the nitrous is injected into an engine and the initial combustion takes place, it creates enough heat to separate the nitrous oxide into its two components, nitrogen and oxygen. Once separated, the additional oxygen is then free to allow combustion of the additional fuel, while the released nitrogen acts as a buffer against detonation and damps mechanical loads.
To run nitrous successfully and safely, you have to introduce precise amounts of additional fuel with precise amounts of nitrous oxide. All of the extra oxygen provided by the nitrous oxide must have fuel with which to burn or you may damage your engine severely. When the amount of nitrous and the amount of supplemental fuel is controlled precisely, your engine can safely and reliably generate exceptional power increases.
Combustion : Nitrous oxide does not burn, it is an oxidiser. It provides more oxygen, so more fuel can be burned, and the result is more power. The atoms in a nitrous oxide molecule are bonded together. The oxygen is not free, but fortunately the bond breaks down as temperature rises. At 565° F, the bond is broken and the oxygen is then free. Combustion temperatures are much more than 565°, so it's not a problem. By adding nitrous oxide to an engine, the total amount of oxygen is increased while the volume of nitrogen is decreased (as a percentage of the whole). This speeds the burn rate and requires less timing advance for peak output. It is hard for many people to grasp gaining power with less timing, but it's a fact. Peak cylinder pressure must occur at approximately 20°ATDC to make peak power. If you speed the burn rate, peak cylinder pressure will occur too soon. It is easy to run too much ignition advance with nitrous, but too much will not only hurt power, it can quickly bring a nitrous engine into detonation and destroy it.
Detonation : Large power increases achieved by using nitrous oxide can increase the chance of detonation. To keep the engine out of detonation, you must control the extra heat that nitrous can make. The easiest way to do this is to add more fuel. All nitrous systems come with rich jetting to give you a safe starting point. The extra fuel takes away heat and raises the detonation limit. If you don't try to over do it, and keep the hp levels within reason, running slightly richer should be all you'll need to control detonation. Running richer will reduce the power output, but raising the detonation limit will allow more nitrous to be used to get more power.
Nitrous-to-fuel Ratios : The chemically correct nitrous to petrol ratio is 9.649:1. If a nitrous engine runs lean, it can destroy the engine in a matter of seconds. There must be enough fuel to maintain this correct ratio, if there isn't, temperatures rise rapidly. The oxygen that was left over from burning the limited amount of fuel will result is a lean burn situation raising cylinder temperatures and melting components. So don't run lean.
Cooling Effects : Cooler intake air is denser and contains more oxygen atoms per cubic foot. So cooler air will allow more fuel to be burned and in turn, make more power. A 10 degree drop in temperature can add 1 to 1.5% power to an engine. Nitrous oxide boils at -129°F and it will begin to boil as soon as it is injected. This can cause an 80° or so drop in manifold air temperature. Now if we are dealing with say a 400 hp engine, we can see a gain of well over 30 hp from the cooling effect alone. This cooling effect also helps the engine deal with detonation.
Average Power : If you were to build a 350 hp 3.5 Rover V8, it would have to rev to 7000+ rpm to make that kind of power and only make power over a narrow rpm range. A nitrous injected 3.5 Rover V8 making 350 hp would make that power at a much lower rpm with a higher average horsepower. So the nitrous engine will out perform the normally aspirated engine by a healthy margin. The reason is that nitrous flow remains constant no matter what rpm the engine is running at. At lower speeds there is more time for the nitrous to fill the cylinders, so you get more nitrous in the cylinders per power stroke at lower rpm. This will boost torque and consequently power more at low rpm. As rpm increases, you will get less nitrous per power stroke, but the engine will start making more normally aspirated power. This really flattens out the torque curve and widens the power band.
So Why Not Pure Oxygen ? : Air has only 23.6% oxygen by weight, the rest is made up largely of nitrogen. That nitrogen does not aid in combustion at all, but it does absorb and carry heat away. When you add nitrous, it has 36% oxygen with the rest being nitrogen. So the more nitrous oxide you add, the less percentage of nitrogen is available to absorb heat. That is why nitrous increases engine heat very rapidly. If we were to add pure oxygen (which has been tried), the percentage of nitrogen would fall even lower as more oxygen was added. We would not be able to add much oxygen before heat was a problem to control. Also compressed oxygen is in a gaseous form, so adding oxygen takes up more room and reduces normally aspirated power, and the amount of nitrogen from it. To put it simply, using nitrous oxide, we can get more oxygen atoms in the engine and have a lot more nitrogen as well. Nitrous can make much more power before heat is uncontrollable.
The Difference between Wet & Dry Systems :
A fuel injected dry manifold system uses a nitrous ONLY injector to deliver only nitrous oxide to the intake. A wet manifold system introduces fuel and nitrous into the intake manifold usually through a combined fuel and nitrous injector. With a dry manifold system, the additional fuel is supplied by increasing fuel delivery through the original fuel injectors when the nitrous system is activated. It is called a dry manifold system because there isn't any fuel present in the intake manifold.
Car Customization - ECU Tuning!
ECU mapping involves modifying the presets programmed on the ECU to achieve the desired effect. Some vehicles needs to be mapped manually in order to improve performance, while other modern cars have ECU's that simply have to be updated to improve performance.
ECU tuning and mapping required great technical knowledge. So in my opinion if you're interested in getting one, consulting a professional would be the best. Because although ECU tuning could greatly increase the car's performance, wrong ECU tuning or mapping could also greatly decrease the car's power or worse.
Sunday, May 14, 2006
Car Customization - Extreme Autofest!
Will update further in the next couple of weeks. Don't really care about the car audio show, but the drag race event is a must watch!